Lecture 7 : Gene finding

rinciples of Computational Biology
Teresa Przytycka, PhD
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Transcription and translation in
prokaryote and eukaryote

Eukaryote Prokaryote
nucleus

=

i Translatio
Splicing ;

mRNA

L Translatign

Protein

The different models of transcription and translation in prokaryotes and eukaryotes.
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Transcription in prokaryote

Transcribed region

<

start codon stop codon

Z- I I Coding region I 3

»

Un-translam

Promoter
Transcription start side Transcription stop side
« upstream
downstream .

-k denotes k™ base before transcription start, +k denotes k' transcribed base



Issues in microbial gene finding

Microbial genome tends to be gene reach
(80%-90% of the sequence 1s coding)

Major problem — which of two or more overlapping
reading frames contains a gene (assumption — only
one does)

The most reliable method — homology searches
(e.g. using BLAST and/or FASTA)

Major problem — finding genes without known
homologue cannot be based on such searches.



Method 1: Homology search for genes

» Translate the sequence 1n all six reading
frames (3 forward and three reverse) and do
a stmilarity search against the protein
databanks. (BLASTX)

» Possible false positives - pseudogenes



Recognition of gene related signals

Promoter side: bacteria TATAAT — Pribnow box at about
—10; eukaryotes — TATA box at about —25.

Termination: Could be done with or without help of the
“rho” protein (rtho dependent termination and rho
independent termination). For rho-independent termination
an inverted repeat sequence 1s required (to facilitate
formation of a hairpin) .

Other signal recognition —e.g binding motives
Recognition method for such signals — motif search



Signal recognition for TATAAT

Recall positional weight matrix

positon [1 |2 [3 (4 |5 |6
A 2 195 |26 [59 |51 |1
C o |2 |14 [13 |20 |3
G 10 (1 |16 [15 |13 |0
T 79 |3 |44 |13 |17 |96

f, —expected frequency of A in genome

f ,i; — expected frequency of A in i position of Pribnow box

log-likelihood ratio:

P(S| S is the box)
e (

P(S| random sequence)

) -tog (17

HfAl

-)- Zlog(%



TTATAAACATGCAAAATCCTCACTTATCAACAAAATGAACAATGTTTTAACAAAGTTTTG
AACAACAAAACCACATAAACTTCCCTCGAAAAACAAAGTTTTAAACAGTTTCCACACCCC
CTAAAGAAGAAGAGAATATTATGTATAAATATAACAATATATATTTAGGACCTGTGGAAA
CTGTTGAAAGGATCTGAGAAATGAGTTCTTTAACACTAAGTAGACGTCCTAGAAGAAACC
GAAAGACAGCAGCTATAAGAGATTTGTTGGCCGAAACTCACTTAAGCCCAAAAGATCTCA
TAGCACCATTCTTTGTGAAGTATGGAAATAACATAAAGGAAGAGATCCCGAGTCTTCCTG
GAGTGTTCCGATGGAGTTTGGATTTGCTATTAAAGGAAATAGAGCGTTTGTGTACCTACG
GGTTACGAGCTGTAATGCTGTTTCCCATTATTCCTGATGATCTTAAAGATGCTTACGGTT
CTTACTCCTCAAATCCTAAAAACATCTTATGTCATAGCATTCATGAAATAAAAAACGCAT
TTCCTCACCTATGTCTGATTAGTGATATAGCTTTAGATCCTTATACGACACACGGTCATG
ATGGGATTTTCCTTAATGGAGAGGTCCTTAATGATGAAAGTGTTAGAATTTTTGGAAATA

Method 2: Finding long ORFs
Open Reading Frame (ORF) 1s a sequence of codons
which starts with start codon, ends with an end codon
and has no end codons 1in-between.

Searching for ORF's — consider all 6 possible
reading frames: 3 forward and 3 reverse

Does the ORF contain a gene ?

1. Must be long enough (roughly 300 bp or more)

2. Should have average amino-acid composition specific for a
given organism.

3. Should have codon use specific for the given organism.

Motivation: Log enough sequence that does not code for a is
expected to contain a stop codon




For a long enough ORF we can check
codon composition

Genes tends to have codon

chpn A C T G composition characteristic
position for a given organism.
1 28% | 33% | 18% | 21%
P(x|in coding) =
2 32% | 16% | 21% |32% | P(x[random)
3 33% | 15% | 14% | 38% | P(A1 at ith position)
; P(Al in the sequence)
frequency | 31% | 18% | 19% | 31%
In genome Score of AAAGAT:
Statistics collected 28%.32%33*%21*.32%.14

from known genes S1*31*.31*.31*31*.19



More sophisticated method (Krogh)

Collect statistics about triples of nuclotides and for each triple x compute

P(x]in coding frame) P(abc| abc 1s a codon)
P(x|random) — ++; P(abc| abc is random )

Codon || Amino Acid | Usage | Random

AAA Lys 3.5 1.3

AAG Lys 1.1 1.6

AAC Asn 2.4 1.4 . .

A AT Aen 14 e Let p,,. = P(abc| abc 1s a codon)
AT As 32 | 15

G_ N _ _ Score of AAAGAT:

TTT Phe 1.9 1.9

Tahla 7+« BEraananciac (in narcant) at whirh sarh Anf the A .03 5 * .032

S
Table from :/lwww.stat.berkeley.edu/users/terry/Classes/s260.2000/ . O 1 3 . O 1 5



Method 3: HMM for prokaryotic genes

//\
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o find coding regions

& use Viterbi algorithm.
Why?



A more general HMM for prokaryotic

cNnes

° Initiation of

translation

Termination of

translation
Inter-Genic
Model

these are usually HMM

www.stat.berkeley.edu/users/terry/Classes/s260.2000/



HMM-based Gene finding programs
for microbial genes

* GenMark- [Borodovsky, Mcinnich — 1993,
Comp. Chem., 17, 123-133] 5" order HMM

(requires estimating 4°*! = 4096 probabilities)

 GLIMMER([Salzberg, Delcher, Kasif, White 1998,
Nucleic Acids Research, Vol 26, 2 55408] —
Interpolated Markov Model (IMM) — method that

avolds some of the problems related to insufficient
data



Where the training data comes from

* Homology to known genes
« EST data

« Long ORF’s



kth order Markov Models

* Probability of each event depends on k
previous events:
a(x|x;...X;)
* Itrequires k+1 dimensional array for

transition probabilities 1s needed. If the states
are A,C,G,T total size is 4%*1

 In practice, these probabilities come from
statistics and large k require lots of data.



Main idea behind GenMark

_
~ J

* Move a window of size 6 trough a known
gene and collect statistics for transition
matrix of dimension 6.

* From collected data compute probability of a
given symbol (blue) providing that the 1t 1s
preceded by given 5 symbols (pink)



Main idea behind Glimmer

Frequently there is not enough data to support k-th
order model 1n general, but but there may be some (k
+1)-mers that occur frequently enough to be good
predictors.

In general, one would like to use highest order model

Only models that are supported by sufficient data are
helpful.

Idea — use a combination of probabilities coming from
models of various order with weights that depends on
an estimation of the “quality” of the model (checked
by the program)

— 1s there enough data to support model of given order?

— 1s there an advantage in moving to higher order model?



The Glimmer Program:

« Part 1: Given training set build Markov model

» Part 2: Identify putative genes 1n entire genome:
— Identify all orfs longer than a threshold

— Score each orf in each reading frame. Identify orfs with
score above a threshold.

— Examine orfs selected above for overlaps

— Score overlapping regions in each frame separately to
see which frame score the highest. Chose best gene
candidate base on putative gene length, score of the
overlap, and other information.



Comparison

Table 1. Comparison of the IMM model used in GLIMMER to a 5"-order
Markov model

Model Genes Genes Additional
found missed genes

GLIMMER IMM 1680 (97.8% 37 209

5th_QOrder Markov 1574 (91.7%) 143 104

The first column indicates how many of the 1717 annotated genes in H.influenzae
were found by each algorithm. The ‘additional genes’ column shows how many extra
genes, not included in the 1717 annotated entries, were called genes by each method.



Gene structure in eukaryotes

Transcribed region

cXO0ns

introns start codon

stop codon

/
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Promoter

Transcription start side

A

AG

ntranslated regions

Transcription stop side

donor and acceptor sides



Some statistics

On average, vertebrate gene 1s about 30KB long
Coding region takes about 1KB

Exon sizes can vary from double digit numbers to
kilo-bases

An average 5° UTR is about 750 bp

An average 3 UTR is about 450 bp but both can
be much longer.



Methods

Homology searches
Dynamic programming
HMM

Generalized HMM
Decision trees

Computational linguistic

Neural networks (like HMM, a machine
learning method)



Homology searching

* By homology methods we can 1dentify
putative exons

 We need to align protein to a gene. But we
need alignment methods that account for
spliced introns — " spliced alignment”



Exon chaining problem

* (G1ven: a set of putative exons such each
exon has associated some weight

* (Goal: Find the maximum weight non-
overlapping sequence of exons

Information about exons may come from local alignment or
BLAST searches and the weight may correspond to the
score. It could come also from any exon prediction method



Form Jones and Pevzner book

6  Dynamic Programming Algorithy,,
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Figure 6.26 A short “genomic” sequence, a set of nine weighted intervals, and the
graph used for the dynamic programming solution to the Exon Chaining problem
Five weighted intervals, (2, 3, 3), (4, 8,6), (9,10, 1), (11,15,7), and (16, 18, 4), shown

by bold edges, form an optimal solution to the Exon Chaining problem. The array at

the bottom shows the values s1, s2, . . ., s2,, generated by the EXONCHANING algo-

rithm.




Form Jones and Pevzner book

EXONCHAINING (G, n)
1 for i« 1to2n

2 S; < 0
3 for 1+ 1to2n
4 if vertex v; in G corresponds to the right end of an interval
5 j « index of vertex for left end of the interval /
6 w «— weight of the interval [
7 s; — max {s; +w, S;—1}
8 else
9 S; « 8;—_1
10 return so,



Form Jones and Pevzner book

Spliced alignment

Spliced Alignment Problem:
Find a chain of candidate exons in a genomic sequence that best fits g
target sequence.

Input: Genomic sequence G, target sequence T, and a set of
candidate exons (blocks) B.

Output: A chain of candidate exons I' such that the global
alignment score s(I'*,T') is maximum among all chains of
candidate exons from 5.

Method: Similar to chaining but you do “in parallel” two things:
Chaining the interval and sequence alignment within each interval



Dynamic programming

GenPareser — Snyder and Strome 1993; 1n hybrid programs
FGENEH- Solovev et al 1995, MORGAN (Salzberg at al.)

* Let i, j positions 1n the sequence. Assume following scoring
functions:

— Intragenic(i,j) = can have two special subclasses — initial non-
coding region and final non-coding regions

— FirstExon(1,)) (must have start codon)

— Exon(i,))

— Intron(1,))

— LastExon(1,j) (must end with end codon)

— SingleExom(i,]) (must have both start and end codons)

* We assume, given a DNA sequence X we can score 1t as a
possible candidate for any of the above regions



Parsing a gene — assigning optimal

partition into block types

Let t be the type of block:
t = intron, first exon, middle exon,...
S.(1,)) the score of the sequence form 1 to j assuming the region t.

D[t,n] = score of the optimal partition of a prefix of X (first n letters )
into blocks under assumption that last block of type t.

D[t,n] = max i<,y (D[t , i]+Si(i+1,n))
the maximum is taken over all possible t of preceding blocks and
all possible starting points 1 of the last block

L4
t =exon t=intron

exon intron

<1 n Cost O(n? |t])



Dynamic programming table D

D|exon,n]
sequence m— The best score of the prefix ending at position i
block type | o ?Aﬁaing position I belongs to an exon
Intron p
cXon
ot

MaX IS taken D[t,n] — maX i<n,t’ (D[t’ ) 1]+St(1+1,n))
over gray

, Max taken over the Exon score of segment
region

gray area from i+1 ton



Computing scoring function S;(i,j)

* Collect statistics based on known genes (the
composition of introns and exons, signal correlated
with various blocks etc)

* For each nucleotide N, and each block type t
(t=1ntron, exon,...), and position 1 in the block
assign score of N belonging to the block t in a given
position 1.

* Possible scores:

— log of probability (GeneParser)
— HMM (Veil)
— Decision tree model score (Veil)



KFrame shift problem

As described the algorithm does not ensure frame
consistency of frames within exons.

El I1 E2

El’ I1° E2

The score for E2 depends on what was the frame of E1’
When executing dynamic programming algorithm the
decision which E1 I1 or E1'I1" is better depends on frame
for E2.

For each location n we need to keep separate score for each frame



GeneParser

Dynamic programming

Authors:Snyder, E. E., Stormo, G. D.
(1995) Identification of Coding Regions in
Genomic DNA. J. Mol. Biol. 248: 1-18.

http://beagle.colorado.edu/~eesnyder/
GeneParser.html



VAIL —a HMM based system

Henderson, Sazberg, Fasman Journal of
Computational Biology, 4:2 (1997), 127-141

http://www.tigr.org/~salzberg/veil.html
Basic 1dea:

* Design a number of separate HMM models that

capture properties of various regions (e.g. intron,
exon)

* Train them separately.
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Exon Model
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Figure 1: The exon and stop codon models in VEIL. This model can be entered in two
ways: either just after outputting a start codon, or upon leaving the 3’ splice site model,
which follows the intron model. The three central columns of states correspond to the
three codon positions. Each of these 12 states is labeled with the base that it can output.
The system outputs bases three at a time, looping back after each codon. Note that
the paths corresponding to a stop codon (TAA, TAG, and TGA) all force the system to
exit from the model (four states at lower right of figure). Alternatively, the system can
exit through the 5 splice site, in which case an intron must follow the exon. The two
blank states on either end of the model can output any base; these “absorbing states”
allow the model to align itself to the proper reading frame, as splice junctions need not
respect codon boundaries.



Intron Model
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Figure 2: The intron model in VEIL. This model functions similarly to the exon model,
with a few important differences. It reads bases three at a time in order to capture dif-
ferences in the frequency of codon usage between coding and noncoding regions. Unlike
the exon model, stop codons do not lead out of this model. The intron model must be
entered and exited via splice junctions, which enforces the constraint that exons must
appear on both sides of each intron.



Splice side models

There are statistics for consensus for donor and acceptor sides
length (9 and 15 respectively). HMM corresponds to the

consen

Donor side exon
boundary: 3-4
Acceptor

side — exon
boundary 14-15

Figure 3: The donor site (5" splice site) model. Sequences must pass through this model
to get from the exon model to the intron model. The exon-intron boundary occurs
between stages 3 and 4; therefore stages 1-3 are part of the exon and stages 4-9 are part
of the intron. Each state can output only one base, as indicated by the labels. Each
edge between two states here contains the conditional probability of outputting a base
in the latter state given the base shown in the previous state.



Training and parsing methods:

» Training: Expectation Maximization (EM)
* Parsing — Viterb1 algorithm



GenScan program

 Uses so called generalized HMM where states generate whole
sequences rather than single letters.

* States- correspond to different functional units of a genome
(promoter region, intron, exon,....)

« States for introns and exons are subdivided according to
“phase” three frames.

 There are two symmetric sub modules for forward and
backward strands.

Performance: 80% exon detecting (but 1f a gene has more than one
exon probability of detection decrease rapidly.



Generalized HMM
f—px
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One thing that is not quite right with this HMM is that it models intron/exon
length as if it had geometrical distribution. This is incorrect:

-very short exons are rear (spliceosme has hard time dealing with them)
-very long exons are rear too.

Generalized HMM addresses this problem as follows:

-At each state, rather then outputting a single symbol it outputs of a
string of finite length

-the length of the output string string 1s randomly chosen with
distribution that depends on state.



'
GENSCAN l’\’tl"q!
Burge,Karlin, 1997




